Whisper Api To Whisper Cpp
Migrate from proprietary APIs to open-source alternatives
Whisper API → Whisper.cpp Migration
This notebook demonstrates how to migrate from OpenAI's Whisper API to using Whisper.cpp for local speech-to-text processing.
Benefits of Whisper.cpp
- Local processing: No API calls, complete privacy
- Cost savings: No per-minute charges
- Offline capability: Works without internet
- Customization: Fine-tune for your specific use case
Installation
# Install whisper.cpp and dependencies
%pip install whisper-cpp-python
%pip install librosa soundfile
Setup
import whisper_cpp
import librosa
import soundfile as sf
import numpy as np
from pathlib import Path
Model Loading
# Load Whisper model (downloads automatically on first run)
model = whisper_cpp.Whisper.from_pretrained("base")
print("Model loaded successfully!")
Audio Processing Function
def transcribe_audio(audio_file_path):
"""
Transcribe audio file using Whisper.cpp
Args:
audio_file_path (str): Path to audio file
Returns:
dict: Transcription result with text and metadata
"""
# Load audio file
audio, sr = librosa.load(audio_file_path, sr=16000)
# Transcribe using Whisper.cpp
result = model.transcribe(audio)
return {
"text": result["text"],
"language": result.get("language", "auto"),
"segments": result.get("segments", [])
}
Interactive Demo
Loading...